An Overview of Maine’s Ground Water Resources

Robert G. Marvinney
State Geologist

Maine Geological Survey

Hancock County Planning Commission
Workshop
January 2010
Presentation outline

- Maine water resource statistics, hydrologic cycle
- Maine water use statistics
- Maine aquifer types, distribution
- Annual ground water cycle, long-term statistics
- Ground water / surface water interaction basics
- Some ground water quality issues
- Water Resources Planning Committee
- An outline of ground water withdrawal regulations
How Much Water Is There?

Moosehead is Maine’s largest lake.

How much water is in the top inch of this lake?

Answer: 2 Billion Gallons!

Image from: www.findrentals.com/php/11267/moosehead.jpg
Maine Water Statistics

- Average annual rainfall: 42 inches = 73,500,000 acre-feet, 24 trillion gallons.
- Run-off: ~ 50% of precipitation, 12 trillion gallons.
- Evaporation/transpiration: ~ 30-40% evaporates or is transpired through vegetation. 7-10 trillion gallons.
- Infiltration to ground water: ~ 10-20% infiltrates to ground water. ~ 2-5 trillion gallons annually.

Sources: National Weather Service, Maine Ground Water Handbook
Water table: level below which the subsurface material is fully saturated with water.
Maine Ground Water Use

2008

Public water systems – 9,175 million gallons

Irrigation – 1,069 million gallons

Bottled water – 702 million gallons

Snow making – 109 million gallons

Source: DEP Water Use Reporting Program
Typical Western United States aquifer

500 – 1,000 miles

Graphic: Hamblin, 1975, Burgess Press
Statewide distribution of significant sand and gravel aquifers

1,300 square miles of mapped sand and gravel aquifers.

Only northwestern-most Maine remains unmapped.

Aquifer maps available from the Maine Geological Survey.
Examples of sand and gravel aquifer units entirely within single watersheds.
Example of a sand and gravel aquifer that crosses watershed boundaries. A high-yield portion of the aquifer is shown in red (> 50 gpm).

Maine Geological Survey graphic
Hancock County Sand and Gravel Aquifers

Blue-community water systems
Green – surface intakes
Beige - other

Maine Geological Survey graphic
Bedrock Wells Yield

Median yield = 5 gpm
Range 0 – 275 gpm

Portion of Open-File Map 07-116, Bar Harbor 1:100,000 quad
Portion of Open-File Map 07-117, Bar Harbor 1:100,000 quad

Median depth = 200 ft
Range 30 – 748 ft
Median thickness = 10 ft
Range 0-212 ft
Maine’s Ground Water Monitoring Network

Purpose: To provide near-real time data on ground water levels in wells representative of Maine’s 3 water-bearing units (bedrock, till, and sand and gravel aquifers), over as great a spatial distribution as possible. Maintained by the USGS Maine Water Science Ctr.

Map at: http://groundwaterwatch.usgs.gov/StateMaps/ME.html
Annual water level variation for a well in Amherst, Maine.

The red line shows the level over the past year. Green bar represents normal, blue above normal, brown below normal.

http://groundwaterwatch.usgs.gov/StateMaps/ME.html
Long-term record for a well in Amherst, Maine
Long-term record for a well in west Texas

http://groundwaterwatch.usgs.gov/StateMaps/TX.html
USGS study of Ground Water Resources

Detailed analysis of a fractured bedrock aquifer.

Estimated static volume of ground water in fractured bedrock.

Estimated recharge to system.

Estimate use = approx. 2.5% of estimated recharge in the study area.

Nielsen, M., 2002, USGS Water Resources Investigation 02-4000
Flow measurement site, Merrill Brook, Freeport, showing typical summer base-flow conditions.

Freeport watershed study.

Winter base-flow = ground water discharge
Ground water / surface water interaction

Equilibrium

Pumping usually results in a combination of all of these effects.
Impacts of pumping

(A) natural ground water flow. (B) At a lower rate of pumping the well intercepts water that would flow out to the stream. At a higher rate (C), the well draws water from the stream into the aquifer – induced recharge.

USGS graphic
Pump test draw down. 450 gpm for 7 days. These realistic tests show an area of drawdown measured in a few thousand feet.
Ground Water Quality Issues

• Naturally occurring contaminants
 – Arsenic, Uranium, Radon, others

• Impacts from Human Activities
 – Spills of all types
 – MTBE
 – Salt-water intrusion
 – Landuse patterns
 – Geothermal systems
 – Pharmaceuticals
 – Pesticides
Hazardous Oil Spill Sites

DEP Database
Saltwater intrusion

Harpswell, Maine
Salt water intrusion

Presumed Area of Submarine Springs

Non-pumping Condition

Emery & Garrett Groundwater, Inc.
Salt Water Intrusion: 2

Pumping Condition

Emery & Garrett Groundwater, Inc.
Saltwater Intrusion

Sea Level, Portland, Maine

\[y = 0.0059x - 11.768 \]

\[R^2 = 0.7255 \]

Impacts of Sea Level Rise?

Portland Tide Gauge

Maine Geological Survey graphic
Water Resources

Watersheds-at-risk analysis provides guidance for additional water resources studies.

Used systematic datasets across entire state:

- 12-digit hydrologic units
- Annual runoff equations from USGS.
- In-stream flow requirements.
- Water use: by industry, agriculture, public water systems, private wells.

Maine Geological Survey graphic
Water Resources

Watersheds-at-risk analysis provides guidance for additional water resources studies.

Q: Does Maine have a statewide problem with water resources, or are there select areas where we should focus additional effort?

A: A few areas need more detailed investigations.

Maine Geological Survey graphic
Water Resources Planning Committee

Established by the Legislature in 2007 (PL 2007 Chap 399)

Stakeholder group with representation from major ground water users, state agencies, conservation groups, well drillers.

Phase 1: Focus on improving water information in watersheds where the potential exists for conflicts in water use. Is there really a problem in these watersheds?

Phase 2: Convene planning groups in watersheds at risk to develop water management plans.

Phase 3: Make recommendations to the Legislature in the event that Phase 2 does not adequately resolve problems.
Water Resources Planning Committee

Participants:

Maine Agricultural Council of Maine	Maine Geological Survey
Maine Potato Board	Maine DEP
Maine Water Utilities Assoc.	Maine Drinking Water Program
Maine Rural Water Assoc.	Maine Dept. Agriculture
Maine Ground Water Assoc.	Maine IFW
Ski Maine Assoc.	LURC
H₂O for Maine	Nestle Waters North America
Water Resources Planning Committee

2008-2009 work in Freeport watersheds.

Further characterization of aquifers.

Stream discharge measurements.

Maine Geological Survey graphic

<table>
<thead>
<tr>
<th>Measurement Information</th>
<th>Section Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure standard: SAE</td>
<td>Section Velocity: 0.29</td>
</tr>
<tr>
<td>Measure equipment: TopSet Rod</td>
<td>Section Pct Err: 0.00</td>
</tr>
<tr>
<td>Sounding Weight: NA</td>
<td>Section Width: 12.60</td>
</tr>
<tr>
<td>Measure ice: No</td>
<td>Section Quality: na</td>
</tr>
<tr>
<td>Flood Measurement: No</td>
<td>Section Area: 7.78</td>
</tr>
<tr>
<td>Flood Coef: 0.00</td>
<td>Section WetPerim: 13.34</td>
</tr>
</tbody>
</table>

Maine Geological Survey graphic
Regulation of Ground Water Withdrawals

Site Location of Development Act: Any activity that triggers this regulation and includes ground water withdrawal undergoes hydrogeologic review and monitoring.

Bulk Water Transport Law: Transport of water across town lines in containers larger than 10 gallons is prohibited, unless exempted. Review for exemption – public health and safety, no adverse affect on existing uses.

LURC: Finding of “no undue adverse affect” and “harmonious fit.” Requires hydrogeologic review and monitoring.

NRPA – Significant ground water well: Any well producing 50,000 gallons per day requires a permit. Hydrogeologic review and monitoring.
Regulation of Ground Water Withdrawals

Chapter 587 Rules: Protect in-stream flows from direct withdrawals that would impact habitats. Also from groundwater withdrawals that may reduce stream flow.

Water Use Reporting: Major users report annually. Summary report to Legislature for their consideration.
SUMMARY

1. Ground water is an abundant, renewable resource.

2. Total annual ground water use in Maine is a small fraction of annual recharge.

3. Sand and gravel deposits of glacial origin are Maine’s best ground water resources.

4. Impacts from ground water use are local.

5. There are a few watersheds where cumulative use (including flows to protect aquatic habitat) may be approaching available supply. These are the subject of on-going studies.

6. There are well coordinated regulations that ensure sustainable withdrawals and minimal impacts on other uses.